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Abstract: We put forward a conjecture for a class of scalar field theories analogous to the

recently proposed weak gravity conjecture [4] for U(1) gauge field theories. Taking gravity

into account, we find an upper bound on the gravity interaction strength, expressed in

terms of scalar coupling parameters. This conjecture is supported by some two-dimensional

models and noncommutative field theories.
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Scalars, such as Higgs and inflaton, play significant roles in both particle physics and

cosmology. Recently, Arkani-Hamed et.al. conjectured an upper bound on the strength

of gravity relative to gauge forces in quantum gravity [4]. Their conjecture enriches the

criteria of consistent effective field theory proposed in [2, 3]. These criteria help to constrain

the string landscape [1] in the vast vacua of string theory. After a careful investigation, we

find that a similar bound exists in a class of scalar field theories. In this class of theories

at least, “gravity is the weakest” even in the appearance of scalars.

We will study scalar field theories with soliton solutions. we will focus our attention

on a special class of such theories. In these theories, the coefficient of the mass term is

±1
2
µ2 with µ2 > 0, and there are higher order terms controlled by a coupling constant λ in

addition to µ. So the theories are described by only two parameters: the mass parameter µ

and the coupling constant λ. When the scalar is coupled to gravity, we find an interesting

constraint on µ and λ.

The idea is to study a scalar system coupled to two-dimensional dilaton gravity, which

is assumed to be dimensional reduction of some consistent quantum gravity system in

higher dimensions. In two dimensions, the system contains solitons in the weak gravity

limit (plus some other massive particles in a sector not considered here). These solitons

appear as asymptotic scattering states so there is a well-defined S-matrix. As one increases

the gravity coupling, these solitons disappear, thus there are no more massive particles and

the S-matrix ceases to exist. We assume that in this case the quantum system becomes

inconsistent, because without the S-matrix, only correlation functions exist which are not

observables in a gravity theory. We therefore conjecture that the quantum theory exists

only in the weak gravity region. In fact, in some exact S-matrices, such as the Sine-Gordon

model [11, 12] and the chiral field model [13], only solitons appear in spectra. It is a

matter subject to debate that whether this is also true in higher dimensions, but we feel

that a consistent theory in higher dimensions should result in a consistent theory upon

dimensional reduction, thus we lift this conjecture to higher dimensions, in particular, to

four dimensions.

When the scalar is coupled to two-dimensional dilaton gravity, the action is generally

taken to be

S =
1

2π

∫

d2x
√
−γe−2φ

[

1

8G

(

R + 4(∇φ)2
)

− 1

2
(∇ϕ)2 ∓ 1

2
µ2ϕ2 − Vc(ϕ, λ, µ)

]

(1)

In this notation, the potential of scalar ϕ is V = Vc ± 1
2
µ2ϕ2. In most cases, after a

redefinition of λ, the higher order coupling terms Vc can be rewritten as

Vc(ϕ, λ, µ) =
µ2

g2α
V ′

c(g
αϕ) (2)

in which g =
√

λ
µ

, and the value of α depends on the form of Vc. As we will show later, for

a given Vc, the value of α can be worked out explicitly.

We rescale the coordinates and the scalar to make them dimensionless

t′ = µt, x′ = µx, ϕ′ = gαϕ (3)
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the action (1) becomes

S =
1

2π

∫

d2x′√−γe−2φ

[

1

8G

(

R′+4(∇′φ)2
)

+
1

g2α

(

−1

2
(∇′ϕ′)2 ∓ 1

2
ϕ′2 − V ′

c(ϕ
′)

)]

. (4)

We stress that rescaling λ in (2) by a numeric factor will rescale the expression of V ′
c

also by a numeric factor. To remove this uncertainty, when writing (2), one should define

λ appropriately to get a reasonable V ′
c whose numeric coefficients are of order 1.

From (4), it is clear that the gravitational strength relative to the strength of scalar

interaction is controlled by G
g2α . If g2α ≫ G, the effect of gravity is just a small correction to

the original scalar field theory, so one can treat the weak gravity perturbatively, expanding

in terms of
√

G
gα . On the other hand, if g2α ≪ G, the correction would be large enough to

destroy the original solutions and make the theory inconsistent. Hence quantum gravity

provides a criterion of consistent scalar field theories, parametrically

g2α & G (5)

This constraint can be lifted to higher dimensions:

(

λ

µ2

)α

& G (6)

In D-dimensional spacetime, the Newton constant G has the dimensions of mass2−D while

the coupling constant λ has the dimensions of mass2−D−2

α .

In the special case

V = −1

2
µ2ϕ2 +

1

n
λϕn +

(

1

2
− 1

n

)

µ2

(

µ2

λ

)
2

n−2

(7)

with an even number n > 2, we have α = 2
n−2

, therefore the relation (6) becomes

(

λ

µ2

)
2

n−2

& G (8)

In four dimensions, setting n = 4 leads to the constraint µ√
λ

. MP l.

In the examples studied below, when gravity decouples, solitons are in the spectrum.

Disappearance solitons in the strong gravity singals breakdown of unitarity: when we tune

up gravity interaction strength gradually, the rank of S-matrix will have a jump at some

point in the parameter space. Indeed, we do not even know if the S-matrix exists in the

strong gravity region. So for the parameter region violating (6), there is no consistent

quantum gravity theory. We suspect that the same kind of relation (6) remains true in a

larger class of theories without solitons, although we do not have evidence.

A kink is the most familiar soliton in two-dimensional spacetime. The action of the

coupled system reads

S =
1

2π

∫

d2x
√
−γe−2φ

[

R + 4(∇φ)2 − 1

2
(∇ϕ)2 − V

]

(9)
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the equations of motion are

0 = R + 4∇2φ − 4(∇φ)2 − 1

2
(∇ϕ)2 − V

0 = 2γab∇aϕ∇bφ −∇2ϕ +
dV

dϕ

0 = −1

2
∇aϕ∇bϕ + 2∇a∇bφ + γab

[

2(∇φ)2 − 2∇2φ +
1

4
(∇ϕ)2 +

1

2
V

]

(10)

with a, b = 0, 1 in two dimensions.

We are interested in static solutions, in which the dilaton φ, the scalar field ϕ and the

metric γab are independent of t.

For any two-dimensional static metric

ds2 = γ00dt2 + 2γ01dtdx + γ11dx2

= −γ00

[

−
(

dt +
γ01

γ00

dx

)2

+
γ2
01 − γ00γ11

γ2
00

dx2

]

(11)

By redefining coordinates

dt̃ = dt +
γ01

γ00

dx, dx̃ =

√

γ2
01 − γ00γ11

γ2
00

dx (12)

one can always switch to the conformal gauge γ̃ab = e2wηab while keeping the solutions

static. Henceforce, we will work in conformal gauge and omit the tilde for brevity.

The equations of motion (10) now reduce to

2(
dφ

dx
)2 − 2

d2φ

dx2
+

1

4

(

dϕ

dx

)2

+
1

2
e2wV = −d2w

dx2
(13)

2(
dφ

dx
)2 − 2

d2φ

dx2
+

1

4

(

dϕ

dx

)2

+
1

2
e2wV = −2

dw

dx

dφ

dx
(14)

2

(

dφ

dx

)2

− 2
d2φ

dx2
+

1

4

(

dϕ

dx

)2

+
1

2
e2wV = 2

dw

dx

dφ

dx
+

1

2

(

dϕ

dx

)2

− 2
d2φ

dx2
(15)

2
dϕ

dx

dφ

dx
− d2ϕ

dx2
+ e2w dV

dϕ
= 0 (16)

We have written them in forms that the left hand sides of (13), (14) and (15) are the same.

Equating the right hand sides of (13) and (14), we find a simple relation

dw

dx
= Ce2φ (17)

Combining it with (14) and (15), it follows that

4Ce2φ dφ

dx
= 2

d2φ

dx2
− 1

2

(

dϕ

dx

)2

(18)
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Using (14) and (15) to eliminate dw
dx

, we obtain

4

(

dφ

dx

)2

− 2
d2φ

dx2
+ e2wV = 0 (19)

Combined with (16) to eliminate e2w, it gives

2
dV

dϕ

[

d2φ

dx2
− 2

(

dφ

dx

)2]

= V

(

d2ϕ

dx2
− 2

dϕ

dx

dφ

dx

)

(20)

We will restrict our attention to a kink potential V (ϕ) with α = 1 in (2). Based on

the work of ’t Hooft [6], we assume

ϕ =
1

g
f−1(x) + subleading terms (21)

where we have used the notation of g =
√

λ
µ

, while f−1(x) is some function independent of g.

Remember that in the notation of (4), the potential and its derivative with respect to

ϕ can be written in the form

V (ϕ, λ, µ) =
µ2

g2
V ′(gϕ) =

µ2

g2
V ′(ϕ′)

dV

dϕ
=

µ2

g2

dV ′

dϕ′
dϕ′

dϕ
=

µ2

g

dV ′

dϕ′ (22)

In the leading order ϕ′ ∼ f−1, therefore

V =
µ2

g2
V ′(f−1) + subleading terms

dV

dϕ
=

µ2

g

dV ′

df−1

+ subleading terms (23)

Substitute the leading order terms of (21) and (23) into (20), we find

2
dV ′

df−1

[

d2φ

dx2
− 2

(

dφ

dx

)2]

=
1

g2
V ′(f−1)

(

d2f−1

dx2
− 2

df−1

dx

dφ

dx

)

(24)

In order to be consistent with this equation, φ has to take the form

φ =
1

g2
Φ−2 + subleading terms (25)

In the strong gravity limit g ≪ 1, the value of φ in (25) will generate a divergent value

of w in (17), unless C = 0. So we set C = 0 from now on in order to avoid the essential

singularity.

We shall use the perturbative expansion to study equations (18) and (20) with C = 0

in the weak gravity limit and thestrong gravity limit respectively.

In the weak gravity region, we assume g ≫ 1 and expand φ and ϕ in 1
g

ϕ =
1

g
f−1 +

1

g2
f−2 + . . .

φ =
1

g2
Φ−2 +

1

g3
Φ−3 + . . . (26)
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Substituting (26) into (18) and (20), we have the following lowest order equations

d2Φ−2

dx2
=

1

4

(

df−1

dx

)2

d2Φ−2

dx2
=

1

2

V
dV

df
−1

d2f−1

dx2
(27)

So we have
V
dV

df
−1

d2f−1

dx2
=

1

2

(

df−1

dx

)2

(28)

It is the same as the kink equation in [6] after a simple calculation

dϕ

dx
=

√
2V (29)

We conclude that in weak gravity region the kink solution survives when this scalar field

is coupled to gravity.

The equation of motion of the scalar field (28) reduce to the equations of motion for

scalar field theory in flat spacetime. So if there are 2-soliton solutions in the pure scalar

field theory, there should be when the scalar field theory is coupled to gravity. On the

other hand, from (27) we see that even there is no soliton, there may be linear dilaton, and

it does no harm to the one soliton soluton. With the soliton, the second derivative of the

dilaton becomes positive in some localized region, and zero elsewhere. So asymptotically

the soliton will induce another linear dilaton. But the effect is only a shift of the coefficient

of the linear dilaton in pure gravity, and hence it will do harm to two soliton solution.

Thus, if S matrix exists in the original pure scalar field theory, it will exist when the scalar

field theory is coupled to dilaton gravity.

In the strong gravity region, we take the limit g ≪ 1 and expand φ and ϕ in g

ϕ =
1

g
f−1 + f0 + . . .

φ =
1

g2
Φ−2 +

1

g
Φ−1 + . . . (30)

Plugging (30) into (18) and (20) leads to the following lowest order equations

d2Φ−2

dx2
=

1

4

(

df−1

dx

)2

dΦ−2

dx
=

1

2

V
dV

df
−1

df−1

dx
(31)

We will analyze the equations in two particular models, i.e. the ϕ4 model and the Sine-

Gordon model.

1. V (ϕ) = λ
4

(

ϕ2 − µ2

λ

)2

Substituting this potential into the equations (31), we have the solution

f−1 = e−8C1x+C2

Φ−2 =
1

16
e−16C1x+2C2 + C1x + C3 (32)

– 5 –
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From (32), it can be seen easily that f−1 does not satisfy the kink condition, so the

kink solution breaks down in this case.

2. V (ϕ) = µ4

λ

[

1 − cos
(√

λ
µ

ϕ
)]

Inserting this potential into the equations (31), we have the solution

f−1 = 2arctan sinh(D1x + D2)

Φ−2 = ln cosh(D1x + D2) + D3 (33)

From the potential in this case, we find that this solution connects two maximum

points rather than minimum, so there is no kink solution in this case.

In action (9) we have set 8G = 1. By recovering G, one finds that the expansion

parameter is not g but g√
G

. This accounts for the name “weak/strong gravity”.

The calculation above tells us that kink solutions appear in weak gravity limit g√
G

≫ 1

but disappear in strong gravity limit g√
G

≪ 1. In the absence of gravity, the existence of

soliton is dictated by unitarity. Naturally we expect that unitarity will still require solitons

when gravity is switched on. Therefore, when g√
G

≪ 1 the breakdown of kink solutions

implies that we cannot take the strong gravity limit smoothly. In other words, there must

be a lower bound on the value of g√
G

, which is determined by the critical point of the

equations of motion. Parametrically, the critical value is of order 1. This leads to
(

λ

µ2

)

& G (34)

which agrees with the conjecture (6). It would be useful to work out the exact value of g√
G

at the critical point.

All the discussions above are on the classical level. One may wonder whether the

conclusion is reliable on the quantum level. To check this, we should consider some quantum

corrections such as higher derivative corrections. When we consider the original action with

the correction term (α′R)n, then the equations of motion (13), (14) and (15) will deserve

the correspondent correction terms, proportional to some positive power of R. Note that

our discussion below (12) shows that the we can always take the conformal gauge and

set the field static in 2 dimensional spacetime. So we will always have R = −2e−2ω d2ω
dx2 .

So fortunately these terms will vanish under the classical solution (17) with C = 0, e.g,
dω
dx

= 0. So we can conclude that our results must be preserved at the quantum level.

Another piece of evidence comes from noncommutative solitons. In noncommutative

field theories, when the noncommutativity parameter θ is sufficiently large (but finite),

there are stable soliton solutions in some three-dimensional scalar theories [7, 8]. Based on

a cubic potential, in [9], Huang and She found a relation involving the noncommutative

parameter. In the following, we will briefly repeat part of their work.

Consider a scalar field theory in three-dimensional noncommutative spacetime, whose

Euclidean action is

S =

∫

d3x
√
−γ

(

1

2
γij∂iϕ∂jϕ + V (ϕ)

)

. (35)

– 6 –
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Written in terms of the canonically commuting noncommutative coordinates

z =
x1 + ix2

√
θ

, z =
x1 − ix2

√
θ

, (36)

the energy is

E =

∫

d2z

(

1

2
(∂ϕ)2 + θV (ϕ)

)

. (37)

When θV is large, the potential energy dominates and we can find an approximate solitonic

solution by solving the equation dV
dφ

= 0.

In our notations, the scalar potential is V (ϕ) = 1
2
µ2ϕ2 + 1

3
λϕ3. The value of the

potential at the stationary point dV
dϕ

= 0, namely ϕcr = −µ2

λ
, determines the soliton energy

completely [8]

E = 2πθV (ϕcr) =
π

3

θµ6

λ2
(38)

In three-dimensional spacetime, a massive pointlike soliton will generate a deficit angle in

the metric. The requirement that the deficit angle be less than 2π implies

8πGE < 2π (39)

Observing (38) and (39), we obtain
1

G
&

θµ6

λ2
(40)

Actually, for a general potential (not necessarily of polynomial form, see [7]) with a

noncommutative soliton whose energy is positive

V =
µ2

g2α
V ′

c(g
αϕ) ± 1

2
µ2ϕ2 =

µ2

(

λ
µ2

)α

[

V ′
c(ϕ

′) ± 1

2
ϕ′2

]

(41)

there is a similar relation
1

G
& E ∼ θµ2

(

λ
µ2

)α (42)

On the other hand, the condition for the existence of soliton solution in the noncom-

mutative theory is

θ ≥ 1

µ2
. (43)

Combine (42) and (43), a constraint with the same form of (6) can be obtained. Using (43)

on the right hand side of (42), we get

1

G
&

θµ2

(

λ
µ2

)α ≥ 1
(

λ
µ2

)α , (44)

which is just the the form of (6). This is a hint that our conjecture (6) is universal.

One may notice that in U(1) gauge field theories the weak gravity conjecture has a

sharp form [4]: there are always particles with M . Q. However, it is difficult to similarly

sharpen our conjecture (6). The particle charge Q is naturally defined for U(1) gauge

– 7 –
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field theories but not for scalar field theories. Fortunately, it has been shown that in [4]

their conjecture can be expressed in different forms, one of which is Tel . g√
G

. This form

is similar to conjecture (6) for scalar field theories. Essentially, in both U(1) gauge field

theories and scalar field theories, the weak gravity conjecture is a statement about effective

field theories. So it can be used to identify the swampland, a series of effective field theories

which are consistent semiclassically yet inconsistent in a quantum gravity theory.

We have so far been dealing with real scalar field theories. The generalization to

theories of complex scalars and scalar multiplets is not straightforward. However, we have

some hints. In [5], we have offered some evidence supporting the weak gravity conjecture

of gauge field theories. To avoid possible confusion, let us use e to replace g in [5]. By

noticing m2
W = 2e2 µ2

λ
, one can easily obtain the relation (6) for three-dimensional examples

studied in [5].

In [10], the weak gravity conjecture in [4] has been generalized from flat spacetime

to dS/AdS spacetime, leading a bound on cosmological constant. It is also interesting to

study scalar theory in a dS background.
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